Short-term Traffic Flow Prediction Based on Multivariable Phase Space Reconstruction and LSSVM

نویسندگان

  • Duo Zhang
  • Fengqing Han
چکیده

Real-time and accurate short-term traffic flow prediction is the premise and key of intelligent traffic control and guidance system. According to this problem, this paper put forward a prediction model based on multivariable phase space reconstruction and least squares support vector machine (LSSVM). First, the model confirms embedding dimension and delay time of the traffic flow, occupancy and average speed time series by analyzing their chaotic characteristics, and reconstructs multivariable state space. Second, the phase points obtained after reconstruction are as input, and the last traffic flow parameters came from the following phase points are as output. Finally, the LSSVM which be trained is adapted to realize shortterm traffic flow prediction. This research compares this model with a model based on univariate phase space reconstruction and LSSVM, and the results show that the model proposed in this paper predicts better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine

Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme ...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

Chaotic Analysis and Prediction of River Flows

Analyses and investigations on river flow behavior are major issues in design, operation and studies related to water engineering. Thus, recently the application of chaos theory and new techniques, such as chaos theory, has been considered in hydrology and water resources due to relevant innovations and ability. This paper compares the performance of chaos theory with Anfis model and discusses ...

متن کامل

Forecasting of Busy Telephone Traffic Based on Wavelet Transform and ARIMA-LSSVM

In order to improve the prediction accuracy of busy telephone traffic which is influenced by multiple factors, this paper proposes a combined forecasting model which takes the influence of multiple factors into consideration and combines three models ——wavelet transform, autoregressive integrated moving average (ARIMA) model and least squares support vector machines (LSSVM) model, LSSVM is opti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014